Stuart Firestein: "Ignorance: How It Drives Science"

Stuart Firestein: "Ignorance: How It Drives Science"

A neuroscientist claims that ignorance--not knowledge--is the true engine of science. He explains how scientists use ignorance to concentrate their research, and why "not knowing" is one of the greatest benefits to science.

“Knowledge is a big subject. Ignorance is bigger...and it is more interesting.” These are the words of neuroscientist Stuart Firestein, the chair of Columbia University’s biology department. Firestein claims that exploring the unknown is the true engine of science, and says ignorance helps scientists concentrate their research. He compares science to searching for a black cat in a dark room, even though the cat may or may not be in there. Firestein's laboratory investigates the mysteries of the sense of smell and its relation to other brain functions. A discussion of the scientific benefits of ignorance.

Guests

Stuart Firestein

chairman of the Department of Biology at Columbia University, professor of neuroscience.

Program Highlights

It's commonly believed the quest for knowledge is behind scientific research, but Columbia University neuroscientist Stuart Firestein says we get more from ignorance. In his new book, “Ignorance: How It Drives Science,” Firestein argues that pursuing research based on what we don’t know is more valuable than building on what we do know.

Thoughtful Ignorance

Firestein said most people believe ignorance precedes knowledge, but, in science, ignorance follows knowledge. Knowledge enables scientists to propose and pursue interesting questions about data that sometimes don’t exist or fully make sense yet. “I use that term purposely to be a little provocative. But I don't mean stupidity. I don't mean dumb. I don't mean a callow indifference to facts or data or any of that,” Firestein said. Instead, thoughtful ignorance looks at gaps in a community’s understanding and seeks to resolve them.

The Scientific Method Was A Mistake

The scientific method was a huge mistake, according to Firestein. He said nobody actually follows the precise approach to experimentation that is taught in many high schools outside of the classroom, and that forming a hypothesis before collecting data can be dangerous. “The trouble with a hypothesis is it's your own best idea about how something works. And, you know, we all like our ideas so we get invested in them in little ways and then we get invested in them in big ways, and pretty soon I think you wind up with a bias in the way you look at the data,” Firestein said. There is an overemphasis on facts and data, even though they can be the most unreliable part of research. “I think science and medicine has set it up for the public to expect us to expound facts, to know things. And we do know things, but we don't know them perfectly and we don't know them forever,” Firestein said.

Chasing A Black Cat In A Dark Room

Firestein compared science to the proverb about looking for a black cat: “It's very difficult to find a black cat in a dark room especially when there's no cat, which seems to me to be the perfect description of how we do science.” He said science is dotted with black rooms in which there are no black cats, and that scientists move to another dark room as soon as someone flips on the light switch. He said scientific research is similar to a buying a puzzle without a guaranteed solution.

Finding A Cure for Cancer

Scientists have made little progress in finding a cure for cancer, despite declaring a war on it decades ago. Firestein said he wondered whether scientists are forming the wrong questions. “It's just turned out to be a far more difficult problem than we thought it was, but we've learned a vast amount about the problem,” Firestein said. But he said the efforts haven’t been wasted. Many important discoveries have been made during cancer research, such as how cells work and advances in developmental biology and immunology.

Asking Specific Questions

Firestein avoids big questions such as how the universe began or what is consciousness in favor of specific questions, such as how the sense of smell works. For example, he is researching how the brain recognizes a rose, which is made up of a dozen different chemicals, as one unified smell. Firestein said scientists need to ask themselves key questions such as, “What will happen if you don't know this, if you never get to know it? What will happen when you do? Then where will you go?” He calls these types of experiments “case histories in ignorance.”

You can read the full transcript here.

Read An Excerpt

Reprinted from IGNORANCE: How It Drives Science by Stuart Firestein with permission from Oxford University Press, Inc. Copyright © 2012 by Stuart Firestein.

Please familiarize yourself with our Code of Conduct and Terms of Use before posting your comments.

Our address has changed!

The Diane Rehm Show is produced by member-supported WAMU 88.5 in Washington DC.